A为抛物线x^2=4y上异于原点的任意一点,F为抛物线焦点,l为抛物线在A点处的切线,点BC在抛物线上,AB⊥l且交y轴于M,点AFC共线,直线BC交y轴于N.(1)求证|AF|=|MF| (2)求|MN|的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 19:25:48
A为抛物线x^2=4y上异于原点的任意一点,F为抛物线焦点,l为抛物线在A点处的切线,点BC在抛物线上,AB⊥l且交y轴于M,点AFC共线,直线BC交y轴于N.(1)求证|AF|=|MF| (2)求|MN|的最小值
xSAj@JhԱ1HA n$1n-;tRp& %5H Ii{Fi&0e,щ%1I8YMId݃#EF6dwbήL(4B jAdZ'I8+fHnяlU:wqQzϗio~ :/Y^x?l<1ez9[A'Wؐ Wr].zψzI^l[5d^zɮh"1,#$c RJ%Iy\2?<~qUTG2הBMFTMƒe'4m1?y ͖``&'jqq&~WXW*¤ ~Q5؅yvb!/ĶZ0.%M)-=A*oG=ES?t&]E

A为抛物线x^2=4y上异于原点的任意一点,F为抛物线焦点,l为抛物线在A点处的切线,点BC在抛物线上,AB⊥l且交y轴于M,点AFC共线,直线BC交y轴于N.(1)求证|AF|=|MF| (2)求|MN|的最小值
A为抛物线x^2=4y上异于原点的任意一点,F为抛物线焦点,l为抛物线在A点处的切线,点BC在抛物线上,AB⊥l且交y轴于M,点AFC共线,直线BC交y轴于N.(1)求证|AF|=|MF| (2)求|MN|的最小值

A为抛物线x^2=4y上异于原点的任意一点,F为抛物线焦点,l为抛物线在A点处的切线,点BC在抛物线上,AB⊥l且交y轴于M,点AFC共线,直线BC交y轴于N.(1)求证|AF|=|MF| (2)求|MN|的最小值
设点A坐标为(a,a²/4)
4y=x²对x求导得:y'=x/2
所以直线I斜率为a/2,直线AB斜率为-2/a
AB直线方程为y-a²/4=(-2/a)(x-a),令x=0解得M点坐标(0,2+a²/4),与抛物线方程联立解得B点坐标(-a-8/a,4+16/a² +a²/4)
F点坐标(0,1),AF斜率=(a²/4 -1)/(a-0)=a/4 -1/a,AF直线方程y-a²/4=(a/4-1/a)(x-a),与抛物线联立解得C点坐标(-4/a,4/a²)求出BC方程,与y轴交点N点坐标(0,-1-8/a²)
|AF|=A到准线y=-1的距离=1+a²/4,|MF|=2+a²/4 -1=1+a²/4
∴|AF|=|MF|
|MN|=2+a²/4+1+8/a²=3+a²/4 +8/a²≥3+2√2

A为抛物线x^2=4y上异于原点的任意一点,F为抛物线焦点,l为抛物线在A点处的切线,点BC在抛物线上,AB⊥l且交y轴于M,点AFC共线,直线BC交y轴于N.(1)求证|AF|=|MF| (2)求|MN|的最小值 设F是抛物线y^2=4x 的焦点,A,B为抛物线上异于原点的两点,FA与FB垂直,延长AF,BF分别交于抛物线C,D,求ABCD四边形的最大面积 F是抛物线x^2=4y的焦点,设A、B为抛物线异于原点的两点,且满足FA垂直FB…F是抛物线x^2=4y的焦点,设A、B为抛物线异于原点的两点,且满足FA垂直FB,延长AF、AB分别交抛物线于C、D,求四边形ABCD面积的 AB是抛物线y=x^2上的点(异于原点),以AB为直径的圆经过原点,求证:直线AB经过定点 已知坐标原点为0,a,b为抛物线y*2=4x上异于0的两点,且向量oa乘于向量ob=0,则/向量AB/的最小值为? 已知坐标原点为O,A,B为抛物线y∧2=4x 上异于O的两点,且向量OA*向量OB=0 ,.已知坐标原点为O,A,B为抛物线y∧2=4x 上异于O的两点,且向量OA*向量OB=0 ,则绝对值向量AB的最小值为A4 B8 C16 D64 求解 抛物线y=x^2上异于坐标原点O的两个不同动点A,求三角形AOB的重心G的轨迹方程 已知抛物线C1:x^2=y,圆C2:x^2+(y-4)^2的圆心为点M.已知点P是抛物线C1上的一点(异于原点),过点P作圆C2的两条切线,交抛物线C1与A.B两点,若过M.P两点的直线L垂直与AB,求直线L的方程? 一抛物线C:y²=4X上存在异于原点的A(x1,y1)B(x2,y2),当y1y2=-16时,直线AB是否恒过定点 抛物线G:y²=4x,A、B为G上异于原点的两点,FA⊥FB,延长AF、BF交G于C、D求四边形ABCD面积的最小值 在平面直角坐标系xOy中,抛物线y=x^2上异于坐标原点O的两不同动点A,B满足AO垂直BO.(1)求三角形AOB的重...在平面直角坐标系xOy中,抛物线y=x^2上异于坐标原点O的两不同动点A,B满足AO垂直BO.(1)求三角 关于抛物线和椭圆的数学题.抛物线Y^2=X上异于坐标原点O的两个不同动点A、B,且AO垂直BO,求三角形AOB的重心G的轨迹方程. 2014山东数学21题第二问已知抛物线C:y方=2px的焦点为F,A为C上异于原点的任意一点,过点A的直线l交于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|,当点A的横坐标为3时,ADF为正三角形.(I)求C的方程 中心在原点、焦点在X轴上的双曲线的两条渐近线与抛物线y2=4x交于A、B两点(异于原点),若AB=16,则双曲线的求双曲线的离心率为? 设F施抛物线G:x^2=4y的焦点(1)过点P(0,-4)作抛物线的切线,求切线的方程(2)设A,B为抛物线G上异于原点的两点,且满足向量FA×向量FB=0,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最 抛物线y=x^2上异于坐标原点O的两个相异的动点A,B满足OA垂直OB,三角形AOB的面积是否存在最小值?若存在,求出最小值,不存在请说明理由. 已知抛物线C的方程y²=4x,O是坐标原点,AB为抛物线异于O的两点且向量OA×向量OB=0一.证明直线AB过定点,并求出该定点坐标二.求AB中点到直线y=(1/2)x的距离的最小值 已知F1,F2为双曲线上x^2/a^2-y^2/b^2=0(a>0,b>0)的两个焦点,p为双曲线右支上异于顶点的的任意一点,o为标原点,下面四个命题1、△PF1F2的内切圆的圆心必在直线x=a上;2、△PF1F2的内切圆的圆心必在直