1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积2.由摆线x=a(t - sint),y=a(1 -cost)(a>0,t属于0~2∏),y=0所围的均匀薄板的面积有原始的公式的.第一个是x=o,第二个是y=0 不一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:21:17
1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积2.由摆线x=a(t - sint),y=a(1 -cost)(a>0,t属于0~2∏),y=0所围的均匀薄板的面积有原始的公式的.第一个是x=o,第二个是y=0 不一
xTN@~=!'z9Kp.5[ɹ #AIDUPVDHHD!G":9ݵc~Hl|7y+}Qw\,,.Q=SBم գ/ka7q2m(6vp#ZG98@4,4/WMj=[g*ͣ3(Geg0 46mه˭\

1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积2.由摆线x=a(t - sint),y=a(1 -cost)(a>0,t属于0~2∏),y=0所围的均匀薄板的面积有原始的公式的.第一个是x=o,第二个是y=0 不一
1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积
2.
由摆线x=a(t - sint),y=a(1 -cost)(a>0,t属于0~2∏),y=0所围的均匀薄板的面积
有原始的公式的.
第一个是x=o,第二个是y=0 不一样的 最重要的是第二个问

1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积2.由摆线x=a(t - sint),y=a(1 -cost)(a>0,t属于0~2∏),y=0所围的均匀薄板的面积有原始的公式的.第一个是x=o,第二个是y=0 不一
2 由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与y=0所围图形的面积=∫(0,2πa)ydx=∫(0,2π)a(1 -cost)d[a(t - sint)]
=a^2∫(0,2π)(1-cost)^2dt
= a^2∫(0,2π)[1-2cost+(cost)^2]dt
=a^2∫(0,2π)[1-2cost+(1+cos2t)/2] dt
=2πa^2+0+ (2πa^2)/2+0=3πa^2
1. 由摆线x=a(t - sint),y=a(1 -cost)(a>0,t属于0~2∏),x=0所围的均匀薄板的面积
=∫(2a,0)xdy=∫(π,2π)a(t - sint)d[a(1 -cost)]
=∫(π,2π)(a^2)*(t + sint)sintdt
=∫(π,2π)(a^2)*[t*sint]dt+(1/2)∫(π,2π)(a^2)*(1-cos2t)dt
=(3/2)πa^2

1 S=∫(从0到2πa)ydx=∫(从0到2π)a(1 -cost)d[a(t - sint)]
=a²∫(从0到2π)(1-cost)²dt=3πa²
2 不是和第一问一样吗

由摆线x=a(t-sint),y=a(1-cost),0最好用格林公式求解 1.由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积2.由摆线x=a(t - sint),y=a(1 -cost)(a>0,t属于0~2∏),y=0所围的均匀薄板的面积有原始的公式的.第一个是x=o,第二个是y=0 不一 高等数学摆线求摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 的长度 求∫∫y^2dσ,其中D是由摆线x=a(t-sint),y=a(1-cost)(0≤t≤2π)的一拱与x轴所围成 高数:摆线x=a(t-sint),y=a(1-cost)(0《=t《2π)确定隐函数y=y(x),求dy/dx 求由摆线x=a(t-sint),y=a(1-cost)的一拱(0≦t≦2ㄇ)与x轴所围成的图形的.面积 在摆线x=a(t-sint),y=(1-cost)上求分摆线第一拱成1:3的点的坐标在摆线x=a(t-sint),y=a(1-cost)上求分摆线第一拱成1:3的点的坐标,大侠们我题目打错了,这个才是我要问的题目 求解一道高数题 ,求由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积 求解一道高数题 ,求由摆线x=a(t - sint),y=a(1 -cost)的一拱(0≤t≤2∏) 与横轴所围图形的面积 【高数】求由摆线x=a(t - sint),y=a(1 -cost)的一拱与x轴所围平面区域绕x轴旋转以后所得旋转体的表面积【高等数学】求由摆线x=a(t - sint),y=a(1 -cost)的一拱与x轴所围平面区域绕x轴旋转以后所得旋 【高数】求由摆线x=a(t - sint),y=a(1 -cost)的一拱与x轴所围平面区域绕x轴旋转以后所得旋转体的表面积【高等数学】求由摆线x=a(t - sint),y=a(1 -cost)的一拱与x轴所围平面区域绕x轴旋转以后所得旋 ∫y ds,其中L为摆线一拱x=a(t-sint) y=a(1-cost)的曲线积分32a^2 / 3 求摆线x=a(t-sint) y=a(1-cost)在对应t=π/2的点处切线方程和法线方程 求摆线x=a[t-sint] y=a[1-cost] 的一拱0≤t≤2π.与横轴围成的图形面积 ∫y^2ds(积分区域为L),其中L为摆线的一拱x=a(t-sint),y=a(1-cost),(0 ∫y^2ds(积分区域为L),其中L为摆线的一拱x=a(t-sint),y=a(1-cost),(0 ∫y^2ds,其中L为摆线的一拱x=a(t-sint),y=a(1-cost),(0 求摆线x=a(t-sint),y=a(1-cost)的一拱,y=0,绕直线y=2a旋转所得的体积.请问摆线要怎么画?