∫x^(2n-1)/(x^n+1)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:53:06
∫x^(2n-1)/(x^n+1)dx
x){Ա"N(OPS_".OP3&H~ ɺl@>D*mgƦT@uP"+HFYy9yP!

∫x^(2n-1)/(x^n+1)dx
∫x^(2n-1)/(x^n+1)dx

∫x^(2n-1)/(x^n+1)dx
∫x^(2n-1)/(x^n+1)dx = ∫[(x^2n-1)/x(x^n+1)+1/x(x^n+1)]dx= ∫[x^(n-1)-1/x+1/x(x^n+1)]dx
=∫[x^(n-1)-x^(n-1)/(x^n+1)]dx=x^n/n-ln(x^n+1)/n+C (其中C是任意常数)