曲面e*z-z+xy=3在点(2、1、10)处的切平面方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:57:19
曲面e*z-z+xy=3在点(2、1、10)处的切平面方程
xNP_Ӗ%itvak{"5 " EѶbjՇxrbr2LΌfi967lMK߄뀵UJԟ֑RJ;0sؕădtKk%%~69=I и az_@":բRM jԥ[PK7Kl/>n??Rs+;vӇYBrQ#[P

曲面e*z-z+xy=3在点(2、1、10)处的切平面方程
曲面e*z-z+xy=3在点(2、1、10)处的切平面方程

曲面e*z-z+xy=3在点(2、1、10)处的切平面方程
写成F(x,y,z)=0的形式,然后分别对x,y,z求导~得到法向量
先求导数dF/dx=y,dF/dy=x,dF/dz=e-1;代直得到法向量
(1,2,e-1)
由此得到切平面:(x-2)+2(y-1)+(e-1)(z-10)=0
这就行了,想的话自己动手化简下...