证明方程3x^2-x^3+7x-3=0有且仅有一个小于1的实数根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:30:07
证明方程3x^2-x^3+7x-3=0有且仅有一个小于1的实数根
xJ@_'I:g

证明方程3x^2-x^3+7x-3=0有且仅有一个小于1的实数根
证明方程3x^2-x^3+7x-3=0有且仅有一个小于1的实数根

证明方程3x^2-x^3+7x-3=0有且仅有一个小于1的实数根
设f(x)=3x^2-x^3+7x-3
f(-2)=12+8-14-3=3>0
f(-1)=3+1-7-3<0
f(0)=-3<0,
f(1)=6>0
f(4)=9>0
(5)=-18<0,
∴f(X)在(-2,-1),(0,1),(4,5)上各有一个零点,
即方程3x^2-x^3+7x-3=0有三个实数根,
有且只有一个实数根不成立.

X1=-1.8035424956825954886084518946249
X2=0.37566362331185211160603668342895
X3=4.4278788723707433770024152111960