计算积分∫(L)|z|dz,其中曲线L是:(1)连接-1到1的直线段,(2)连接-1到1,中心在原点的上半圆周.
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 19:25:04
xQN@|sfy>C^z1D/@zhihD*4V&TDޥa+Q41z=̷̬k#vviϸߵB-
2EI+Z䱛ǶǃUr9~Cc潀$^JGMxJ ;|}ِbTwſ /zmF/m3ڊ`Ce^A3)J
_
i[vF%DfL"LqF
))ls,*,7i*հe[~ JڕЁ>w?/k
计算积分∫(L)|z|dz,其中曲线L是:(1)连接-1到1的直线段,(2)连接-1到1,中心在原点的上半圆周.
计算积分∫(L)|z|dz,其中曲线L是:(1)连接-1到1的直线段,(2)连接-1到1,中心在原点的上半圆周.
计算积分∫(L)|z|dz,其中曲线L是:(1)连接-1到1的直线段,(2)连接-1到1,中心在原点的上半圆周.
因为|z|=√(x^2+y^2),dz=dx+idy,所以积分=∫√(x^2+y^2)(dx+idy)=∫√(x^2+y^2)dx+i∫√(x^2+y^2)dy,第一问由于y=0,dy=0,所以积分=∫√x^2dx(积分限-1到1)=-∫xdx(积分限-1到0)+∫xdx(积分限0到1)=1/2+1/2=1.第二问由z在圆周上知x^2+y^2=1,所以积分=∫dx(积分限-1到1)+i∫dy(积分限0到1)=2+i.
复变函数的问题∫(L)|z|dz.计算积分∫(L)|z|dz,其中曲线L是:(1)连接-1到1的直线段,(2)连接-1到1,中心在原点的上半圆周.
计算积分∫(L)|z|dz,其中曲线L是:(1)连接-1到1的直线段,(2)连接-1到1,中心在原点的上半圆周.
大学第二型曲面积分问题计算空间第二类型曲面积分∫(封闭L)(y^2-z^2)dx+(z^2-x^2)dy+(x^2-y^2)dz 其中L为八分之一球面x^2+y^2+z^2=1,x>=0,y>=0,z>=0的边界线ABCA,从球心看L,L为逆时针方向.
计算曲线积分∫{L}xydx+(y-x)dy,其中L是(0,0)到(1,2)直线段
高数-对坐标的曲线积分∫[L]xyzdz,L为圆周x^2+y^2+z^2=1,z=y,面对z轴的正向看去,L的方向依逆时针方向.没错的,就是dz
计算对弧长的曲线积分∫L x^2ds,其中L是右半圆x2 + y2 = 1(x >=0)
关于斯托克斯公式的问题,设L是柱面x^2+y^2=1与平面z=x+y的交线,从z轴正向往负向看去为逆时针方向,则曲线积分∫ xzdx+xdy+y^2/2dz=__ (由于打不出曲线积分符号,凑合看吧.
求解答、、曲线积分...斯托克斯公式求I=∮L(y^2+z^2)dx+(z^2+x^2)dy+(x^2+y^2)dz,其中L是球面x^2+y^2+z^2=2bx与柱面x^2+y^2=2ax(b>a>0)的交线(z≧0)它的方向与z轴构成右手螺旋.麻烦用斯托克斯公式,
计算曲线积分I=∫-ydx+xdy其中L是沿曲线y=根号(2x-x^2)从A(2,0)到(0,0)
计算曲线积分∫y^2dx+cos2xdy,其中L是从O(0,0)沿曲线y=tanx到点A(π/4,1)的弧段
曲线积分的问题计算第二类曲线积分∮y²dx+z²dy+x²dz,L为曲线x²+y²+z²=R²,x²+y²=Rx(R>0,z≥0)从x轴的正方向看去为逆时针方向.不要说用什么什么公式算,我也知道那些
计算积分∫sinz/z^2dz,|z|=1,∫cosz/[z(z+1)]dz,|z|=2,积分曲线均正向,∫(cos^2)x/(1+x^2)dx,∞→0
高数,对弧长的曲线的积分的问题∫[L]x^2ds,其中L是球面x^2+y^2+z^2=R^2与平面x+y+z=0相交的圆周.
计算积分∮c1/(z(3z+1))dz其中C为|z|=1/6,
沿指定曲线的正向计算下列复积分∫|z|=2,(e^2z)/[z×(z-1)^2]dz
计算下列此列曲线积分:∫(L)xdx+ydy+(x+y-1)dz,L为从点A(1,1,1)到点B(2,3,4)的一直线段.
∫|z-1||dz|=?,其中积分路径是逆时针方向的单位圆周.
计算曲线积分∮(x^3+xy)dx+(x^2+y^2)dy其中L是区域0