有关数列的特征根方程为什么a(n+2)=a(n+1)+an是无解的?除了一项一项倒 还有其他方法吗?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 20:32:27
xQMN@K!;ބ@n6֘mk7hހCaÏƕ1{{^F6DW>QI.f>,F؎
pc¨1:' Dtjj`049"~aaNM>=~ZP``(?m:E!]⽑;p>53;n[nc9}U"%U"8-a8vE'Y FhZ +H% @Ud|TuVaYJ`(VU] .2dt%/!u
有关数列的特征根方程为什么a(n+2)=a(n+1)+an是无解的?除了一项一项倒 还有其他方法吗?
有关数列的特征根方程
为什么a(n+2)=a(n+1)+an是无解的?除了一项一项倒 还有其他方法吗?
有关数列的特征根方程为什么a(n+2)=a(n+1)+an是无解的?除了一项一项倒 还有其他方法吗?
不知谁跟你说这是无解的…………
a(n+2)=a(n+1)+an这个递推式是斐波那契数列
其特征方程是x^2-x-1=0
其有两个特征根
α=(1+根号5)/2
β=(1-根号5)/2
当a1=a2=1时
an=(α^n-β^n)/根号5=(((1+根号5)/2)^n-((1-根号5)/2)^n)根号5
具体请见
有关数列的特征根方程为什么a(n+2)=a(n+1)+an是无解的?除了一项一项倒 还有其他方法吗?
为什么特征方程可以求数列通项?数列 {a(n)},设递推公式为 a(n+2)=p*a(n+1)+q*a(n),其特征方程为 x^2-px-q=0 .若方程有两相异根 A、B。为什么就有a(n)=c*A^n+d*B^n?
特征根方程解数列数列an中 a1=3/2 a(n+1)=3an/(2an+1) 求数列的通项公式 可不可以用特征跟方程求解,
特征根求数列通项如果用数列中的特征方程求通项时有2个等根该怎么办?比如a(n+2)-4a(n+1)+4a(n)=0,a1=1该怎么求?
数列的特征根法的Xan=a(n-1)+2/2a(n-1)+1 x= x+2/2x+1 为什么a(n-1) 与an 都 设成X?
帮忙求这个数列的通项(特征根)用特征根求 a(n)=a(n-1)*a(n-2) a1=1 a2=2 的通项公式我只想知道为什么不能用特征根。
关于特征根求数列通项的一些疑问A(n+2)=pA(n+1)+qAn, p,q为常数(1)通常设: A(n+2)-mA(n+1)=k[A(n+1)-mAn], 则 m+k=p, mk=-q(2)特征根法:特征方程是y²=py+q(※)注意:① m n为(※)两根.
二阶线性递归数列A(n+2)=c1A(n+1)+c2An若特征方程两根并非实根(即无实根),是否一定为周期数列?
由特征方程求通项的一些问题,如果特征方程中有重根该如何处理呀?如果有复根呢?举个例子吧数列an中,a(0)=1,a(1)=3,a(2)=7a(n+3)=3a(n+2)-3a(n+1)+a(n)求a(n)的通项用特征方程解怎么解呀,最好也能把为什
6.试用特征根方程法,求满足下列递推式的数列a(n).(1) a(n+2)=a(n+1)+2a(n) ,a(0)=1,a(1)=0; (2) a(n+2)=3a(n+1)-2a(n),a(0)=0,a(1)=1 (3) a(n+3)-2a(n+2)-a(n+1)+2a(n)=0,a(0)=0,a(1)=0,a(2)=6 (1) a(n)=[(2^n)+2*(-1)^n]/3 (2) a(n)=(2^n)-1 (3) a(
为什么求二阶齐次线性递推方程时,(1)若特征方程有两相异根α,β,则a[n]=c1·α^n+c2·β^n;(2)若特征方程有两等根α=β,则a[n]=(c1+nc2)·α^n,(其中 c1,c2 可由初始条件确定)(1)、(2)是如何推导的?
特征方程重根问题若n阶递推数列特征方程出现重根,其通项是怎样的?例An+3=4An+2 + 5An+1 + 2AnA1=A2=A3=1求通项
数列特征根求法遇到下列问题,其通式如何?a(n+3)-2a(n+2)-a(n+1)+2a(n)=0,a(0)=0,a(1)=0,a(2)=6用特征根方法求,如果遇到下面问题怎么解决?特征方程为x^3-2x^2-x+2=0,(x-1)(x-2)(x+1)=0,特征根为1,2,-1设通解为:a(n)
有关数列的一道题已知数列{an}中a(1)=1,且a(n+1)=2a(n)/(a(n)+1),求通项公式a(n)
数列线性递推关系式在数列an中,a1=1,a2=2╱3,且1╱a(n-2)+1╱an=2╱a(n-1)(n≥3),求an.我做特征根方程算出的an怎么不对……谁会做用特征很做!
特征根解递推数列A(n+1)=4An-4A(n-1) A1=1还有一个A(n+1)=3An-1A(n-1) A1=1主要是想知道一下 特征方程解出来的根一样与不一样的情况要怎么做。
为什么能用特征根方程求数列通项公式
已知X(n+1)=(3+4Xn)/(2+Xn),求数列{Xn}的通项公式?应该如何构造新数列?我在参考书上看到的一种解法是根据数列的特征方程构造新数列,什么是 数列的特征方程?