证明f(x)=e的x次方-1(x>= 0)f(x)=0(x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 21:30:39
证明f(x)=e的x次方-1(x>= 0)f(x)=0(x
x){ٌ4 MZ*YlN]{:*l KhT$铤@Oݾif:9v p~j\!PFMXYgÓK!=ٱ@F 1H

证明f(x)=e的x次方-1(x>= 0)f(x)=0(x
证明f(x)=e的x次方-1(x>= 0)f(x)=0(x<0)在x=0处极限的存在性

证明f(x)=e的x次方-1(x>= 0)f(x)=0(x
考虑左右极限,limx->0+ f(x) = limx->0+ e^x -1 = 0,limx->0- f(x) = limx->0- 0 = 0,所以极限为0.