难度系数 特难1.证明题:试证当X≥0时有不等式xe-xln≤(1+x).2.求极限lim x+x2+…+xn-n =x→1 x-13.求a,b的值使函数f(x)= ①ex-1 x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:34:46
难度系数 特难1.证明题:试证当X≥0时有不等式xe-xln≤(1+x).2.求极限lim x+x2+…+xn-n =x→1 x-13.求a,b的值使函数f(x)= ①ex-1 x
x){9k]˞ol;|C{h=^ >;9QRgӷ=dGOWV=\a]glcӳy/gNUЮ0~԰L"O7OQ$C ]CcDZ6yw@4*4mM\ TPaTy`q֎ߡ`%pׂyD:YfЇ鳙S^lK?] Dvu$فY

难度系数 特难1.证明题:试证当X≥0时有不等式xe-xln≤(1+x).2.求极限lim x+x2+…+xn-n =x→1 x-13.求a,b的值使函数f(x)= ①ex-1 x
难度系数 特难
1.证明题:试证当X≥0时有不等式xe-xln≤(1+x).
2.求极限lim x+x2+…+xn-n =
x→1 x-1
3.求a,b的值使函数f(x)= ①ex-1 x

难度系数 特难1.证明题:试证当X≥0时有不等式xe-xln≤(1+x).2.求极限lim x+x2+…+xn-n =x→1 x-13.求a,b的值使函数f(x)= ①ex-1 x
晕 这是大学数学把?