矩阵证明题:若n阶方阵满足AA^T=E,证明对任意n维列向量x,均有x^TAx=0.若n阶方阵满足A^T=-A,证明对任意n维列向量x,均有x^TAx=0.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 09:18:06
矩阵证明题:若n阶方阵满足AA^T=E,证明对任意n维列向量x,均有x^TAx=0.若n阶方阵满足A^T=-A,证明对任意n维列向量x,均有x^TAx=0.
x){>[_o|6zѽ4mϦJ<۽Ŷ͎q!:UO|{绷բ܅Ovo{6e糎 `< KT 65{Ɏ6~>s]m(.H̳>jf

矩阵证明题:若n阶方阵满足AA^T=E,证明对任意n维列向量x,均有x^TAx=0.若n阶方阵满足A^T=-A,证明对任意n维列向量x,均有x^TAx=0.
矩阵证明题:若n阶方阵满足AA^T=E,证明对任意n维列向量x,均有x^TAx=0.
若n阶方阵满足A^T=-A,证明对任意n维列向量x,均有x^TAx=0.

矩阵证明题:若n阶方阵满足AA^T=E,证明对任意n维列向量x,均有x^TAx=0.若n阶方阵满足A^T=-A,证明对任意n维列向量x,均有x^TAx=0.
题目错的,把条件改成AA^T=0才对.
补充:把x^TAx转置一下就明白了.

矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.证明:A为正交矩阵的充分必要条件是a=2/3 =/是不等于的意思=/是不等于的意思 矩阵证明题:若n阶方阵满足AA^T=E,证明对任意n维列向量x,均有x^TAx=0.若n阶方阵满足A^T=-A,证明对任意n维列向量x,均有x^TAx=0. 问一道线性代数题:设A为n阶方阵,满足AA^T=E(E是n阶单位矩阵),|A| 若A是n阶方阵,且满足AA^T=E,若|A| 设4阶方阵A满足/A+3E/=0,AA^T=2E,矩阵/A/ 证明题:若n阶矩阵A满足条件AA^T=E,则(1)|A|=1或-1.(2)A是可逆矩阵,且A^-1=A^T 1.设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0 设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|= 设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵 两道线性代数判断题.第一题:若n阶方阵A满足A^3=0 ,则|A|=0 第二题:设A为M*N矩阵 ,则AA^T 为对称矩阵 线性代数证明题 设n阶方阵A满足A*(A的的转置矩阵)=E,切|A| 偶线性代数自考:问个矩阵初级题设A为n阶方阵,且满足AAˊ=E和|A|=-1,E表单位矩阵,证明:行列式|E+A|=0,|E+A|=|AA'+A|=|A(A'+E)|=|A||A'+E|=-|A'+E|=-|A'+E|=-|E+A| ∴2|E+A|=0 ==> |E+A|=0-|A'+E|=-|E+A|这一步 关于矩阵的一道数学证明题证明满足A²-3A-2E=0的n阶方阵A是可逆矩阵 证明:若A是n阶矩阵,且满足AA^T=E,|A|=-1,则|E+A|=0达人们请指点一二!^ ^-|E+A'|=-|A+E|问下这步是怎么得出来的? .设A为n阶方阵,且满足AA^T =E和|A|=-1,证明行列式|E+A|=0.我的问题是为什么|A| |E+A'|= |A| |(E+A)'|= |A| |E+A| 设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A| 设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A| 线性代数问题.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.5.设A为n阶实方阵,且AA^T = E,证明行列式 | A |= ±1.