在锐角三角形ABC中,求证tanAtanBtanC大于1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:34:54
在锐角三角形ABC中,求证tanAtanBtanC大于1
xRQN@?ƮmUʱd$(j{jЦB |B/Й;3͛6 Oz.K\avKF*o]=~zZ5i[7#v_*58zw39*Ciޓj*g2C$3.>a gL~~6 `!R*bak|!qw!>oD8h 3=TYJRWPl󩥿iۋo |n;pY7H#le_߳4jurjE ӰZn +trILa/-4CPJ!Yhe Y|!-EI

在锐角三角形ABC中,求证tanAtanBtanC大于1
在锐角三角形ABC中,求证tanAtanBtanC大于1

在锐角三角形ABC中,求证tanAtanBtanC大于1
首先证明这样一个结论
:三角形ABC tanAtanBtanC=tanA+tanB+tanC
证明如下
tanA=tan(∏-B-C)=-tan(B+C)=
-(tanB+tanC)/(1-tanBtanC)
=(tanB+tanC)/(tanBtanC-1)
所以 tanA*(tanBtanC-1)=tanB+tanC
tanA*tanB*tanC - tanA=tanB+tanC
所以tanAtanBtanC=tanA+tanB+tanC
要证明 tanAtanBtanC>1 只要证明 tanA+tanB+tanC>1 即可
因为ABC是锐角三角形,所以A,B,C都大于0,小于90度,
所以tanA>0,tanB>0,tanC>0
又因为,三角形中至少有一个角大于或等于60度(反证法,否则内角和小于180度),不妨设是角A,
所以tanA>根号3,又tanB>0,tanC>0
所以tanA+tanB+tanC> 根号3 >1
所以tanAtanBtanC>1.

哈哈,看来你是个非常喜欢学习的人。
900<90-B01/tanBtanAtanB>1
同理,tanBtanC>1,tanCtanA>1
相乘即得。