求证:设n阶方阵A的伴随矩阵为A*,若|A|≠0,则|A*|=|A|n-1n-1为右上角的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:29:29
求证:设n阶方阵A的伴随矩阵为A*,若|A|≠0,则|A*|=|A|n-1n-1为右上角的
x){F彜ٴ/glu|>ɞ-/g?c΋qG tvq-T

求证:设n阶方阵A的伴随矩阵为A*,若|A|≠0,则|A*|=|A|n-1n-1为右上角的
求证:设n阶方阵A的伴随矩阵为A*,若|A|≠0,则|A*|=|A|n-1
n-1为右上角的

求证:设n阶方阵A的伴随矩阵为A*,若|A|≠0,则|A*|=|A|n-1n-1为右上角的
(1)
证:
如果r(A)