计算三重积分∫∫∫(x+y+z)^2dxdydz,其中积分局域是x^2/a^2+y^2/b^2+z^2/c^2≤1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:46:37
xJ@_
J%f%E#M6EmVE<n)>@aᛙ0o^ֳb~W}YXHGjm>oy>11ncbP^烼0vjRETO/뵢z2 H/I$d'E=uAZd&iS
a"")7"B4U&X #17
B0yTN.-B]0[K}¾AmԎ.\EyA
计算三重积分∫∫∫(x+y+z)^2dxdydz,其中积分局域是x^2/a^2+y^2/b^2+z^2/c^2≤1
计算三重积分∫∫∫(x+y+z)^2dxdydz,其中积分局域是x^2/a^2+y^2/b^2+z^2/c^2≤1
计算三重积分∫∫∫(x+y+z)^2dxdydz,其中积分局域是x^2/a^2+y^2/b^2+z^2/c^2≤1
计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2
计算三重积分(x+y+z)dxdydz
计算三重积分∫∫∫Ω(x^2+y^2)dv,Ω={(x,y,z)|(x^2+y^2)/2≤z≤2}
求三重积分∫∫∫(x+y+z)dxdydz 积分域x^2+y^2+z^2=0
计算三重积分∫∫∫(|x|+|y|+|z|)dv,其中Ω:x^2+y^2+z^2≤a^2,哪位大师来解下,
三重积分计算I=∫∫∫(x+y+z)^2dv..设V:x^2+y^2+z^2
问一道三重积分问题计算三重积分∫∫∫y^2dxdydz,其中Ω为锥面z=(4x^2+4y^2)^1/2与z=2所围立体
计算三重积分题计算∫∫∫zdV,其中积分空间由曲面2z=x^2+y^2,(x^2+y^2)^2=x^2-y^2及平面z=0所围成.
用球坐标计算三重积分I=∫∫∫z^2dv 其中图形是由x^2+y^2+z^2
计算三重积分I=∫∫∫z^2dv 其中图形是两个球体x^2+y^2+z^2
计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域
计算三重积分∫∫∫zdxdydz,其中Ω由z=根号下x^2+y^2与z=4围成的闭区域.
设Ω由平面z=1及z=x^2+y^2围成,计算三重积分∫∫∫zdxdydz
三重积分计算:计算 ∫∫∫Ω√x²+y²+z² * dv ,其中Ω:x²+y²+z²≤x
计算三重积分∫∫∫(x+y+z)dv,其中Ω={(x,y,z)|xx+yy≤zz,0≤z≤h}
计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-2)^2
计算三重积分∫∫∫(x^3y-3xy^2+3xy)dV,其中V是球体(x-1)^2+(y-1)^2+(z-1)^2
计算三重积分,下标积分区域为Ω,求∫∫∫z^3dxdydz ,Ω为x^2+y^2+z^2≤1 ,z+1≥根号下x^2+y^2