已知 abc=1,求证:1/ab+a+1 + 1/bc+b+1 + 1/ca+c+1=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 09:46:08
已知 abc=1,求证:1/ab+a+1 + 1/bc+b+1 + 1/ca+c+1=1
xMN0e,e=Z?Xn!EAU)Rvvxx,՛nQD $gfu/'v(E$bTH"J 01Ykqd.p(8GhZywuvqwvU걪KNWVL7 `Unj|m= N_ sq?hqs7ƬSU/vv}BF{3ޙa(f3?H

已知 abc=1,求证:1/ab+a+1 + 1/bc+b+1 + 1/ca+c+1=1
已知 abc=1,求证:1/ab+a+1 + 1/bc+b+1 + 1/ca+c+1=1

已知 abc=1,求证:1/ab+a+1 + 1/bc+b+1 + 1/ca+c+1=1
abc=1
所以
b=1/ac
ab=1/c
bc=1/a
所以左边
=1/(1/c+a+1)+1/(1/a+1/ac+1)+1/(ac+c+1)
第一个式子上下乘c
第二个式子上下乘ac
=c/(ac+c+1)+ac/(ac+c+1)+1/(ac+c+1)
=(ac+c+1)/(ac+c+1)
=1=右边

我只能说楼上的方法太笨!
原式=1/(ab+a+1)+a/a(bc+b+1)+ab/ab(ca+c+1)
=(1+a+ab)/(1+a+ab)
=1