如图,抛物线y=x2-2x-3与x轴交A、B两点如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为21)P是线段AC上的一个动点,过P点作y轴的平行线交抛物

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 23:24:03
如图,抛物线y=x2-2x-3与x轴交A、B两点如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为21)P是线段AC上的一个动点,过P点作y轴的平行线交抛物
xUOVW*Wd;I6N(ڒ5LK% Q` V.Z(@3y_w$c톶{sw}r"xo/Vll(.K񦾐u.NLcG5tw ҟC9+Ju|{UsoO@!,i,]™V~U=K֌ 6F#POeP(MDi͌׼F.y< }ߦ8p;D D:l W[#n+yM%.A2^vvB. zD~[p-78xĜ kNTe@L`F{ 6qAv>X4g k.oUmfmlg`#J(w9j=%S9GuZ_ u#G0H}/R?u<Ѥ4RL@_GcD|fQaqJaLcIT㡤Ԅ6aMMb2ȨH'P(!!1,xX8I 'I>s/%y+, b 3Ɖ0'$7*2Ad4.0  EGaZNJwCVWyπ74 WVA]|@VְUt?R܀w$De)֫\瘎J1bQ?Iwq,I`i! <PTŏJ!aAHVWn.ԃġaS/Rjʕ|\KA@sxr<^<‹k |7@Y(ʑdjv!g͔٘9vwdH̤8gd4y" 0j(MX0(>ˆ)4M 8D0.TSU| @xzA?]ZĜ'5.tm&j︍rIVi,e b@6_ .)J^l^{9eW}{PCn%&hU7x J1볶x.&5 X؅G!pr.ȍ ڕwU u9T*y|&io0ڪSvojk9t}n'|z

如图,抛物线y=x2-2x-3与x轴交A、B两点如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为21)P是线段AC上的一个动点,过P点作y轴的平行线交抛物
如图,抛物线y=x2-2x-3与x轴交A、B两点
如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2
1)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值
3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
补图

如图,抛物线y=x2-2x-3与x轴交A、B两点如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为21)P是线段AC上的一个动点,过P点作y轴的平行线交抛物
容易求得
A点坐标(-1,0) B坐标(3,0)
C 坐标(2,-3)
AC 方程
y/(x+1)=(0+3)/(-1-2)
y = -x-1
设P点为(x0,y0)
y0 = -x0 -1 ( -1=

1 y=(x-1)^2-4 则 A (-1,0) B(3,0) C(2,-3) AC解析式为y=-x-1
2 PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4 x属于[-1,2]因为可取1/2 所以最大值9/4
3 分析A F2点关系 要么四边形邻点 要么对点 (1)若为邻点 必有AF//GC 因为AF为X轴 所以GC//x轴...

全部展开

1 y=(x-1)^2-4 则 A (-1,0) B(3,0) C(2,-3) AC解析式为y=-x-1
2 PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4 x属于[-1,2]因为可取1/2 所以最大值9/4
3 分析A F2点关系 要么四边形邻点 要么对点 (1)若为邻点 必有AF//GC 因为AF为X轴 所以GC//x轴 再加上G为抛物线上的点 所以容易得G为(0,-3)要想四边形是平行四边形 FG和AC必互相平分 即有公共中心 容易得F=(1,0)
(2)若为对点 且想四边形是平行四边形 那么G C2点必关于AF对称 所以G点纵坐标必为3 则G为(1+根号7,3)或者(1-根号7,3) 来求2点 对应不同的F 只需满足AF和CG有公共的中心 具体解多少不求了 方法跟(1)雷同

收起

,,,

1 y=(x-1)^2-4 则 A (-1,0) B(3,0) C(2,-3) AC解析式为y=-x-1
2 PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4 x属于[-1,2]因为可取1/2 所以最大值9/4
3 分析A F2点关系 要么四边形邻点 要么对点 若为邻点 必有AF//GC 因为AF为X轴 所以GC//x轴 再加...

全部展开

1 y=(x-1)^2-4 则 A (-1,0) B(3,0) C(2,-3) AC解析式为y=-x-1
2 PE=P点纵坐标-E点纵坐标=-x-1-x^2+2x+3=-(x-1/2)^2+9/4 x属于[-1,2]因为可取1/2 所以最大值9/4
3 分析A F2点关系 要么四边形邻点 要么对点 若为邻点 必有AF//GC 因为AF为X轴 所以GC//x轴 再加上G为抛物线上的点 所以容易得G为(0,-3)要想四边形是平行四边形 FG和AC必互相平分 即有公共中心 容易得F=(1,0)

收起

如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点. 如图,在如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线 如图,抛物线y=x2-2x-3与x轴交A.B两点,与y轴交于C点,在抛物线上找一点P,使S三角形ABC=S三角形BCP,求P坐 如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D是该抛物线的顶点.如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点 如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点(1)请求出A、B、D的坐标(2)如图如图,抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,点D是抛物线的顶点(1)请求出A、B、D的 如图,已知抛物线y=x2-ax +a +2与x轴交于A,B两点,与y轴交于点D(0,8),直线DC∥x轴,交抛物线与另一点C.动点 P如图,已知抛物线y=x2-ax +a +2与x轴交于A、B两点,与y轴交于点D(0,8),直线DC∥x轴,交抛物线与 如图 抛物线y=x2+bx+k与x轴交于A、B两点,与y轴交于点c(0,-3)如图 抛物线y=x2+bx+k与x轴交于A、B两点,与y轴交于点c(0,-3)(1)k=----,点A的坐标为-------,点B坐标为-----(2)设抛物线y=x2+bx+k的顶点为M,求四 已知抛物线y=x2-(k+1)x+k 1)试求k为何值时,抛物线与x轴只有一个公共点; 2)如图,若抛物线与X轴交于A、B 如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与如图,抛物线 y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B 两点的坐标及直 如图,在平面直角坐标系中,抛物线y=x2-2x-3与x轴交于A,B,与y轴交于点C.求三角形ABC的面积 如图,在平面直角坐标系中,抛物线y=—x2+2x+3与x轴交于a,b两点,与y轴交于点c 如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛物线交y轴于如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛 如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点 急、、如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存 如图 已知抛物线y=x2+bx+c与x轴交与A.B俩点【A在B点左侧】与y轴交与点C【0,-3】如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线 抛物线与x轴交于A(x1,0)B(x2,0)且x1小于x2,与y轴交于C(0,-4),其中x1x2是方程x^2-4如图 抛物线与x轴交于A(x1,0) B(x2,0)两点,且x1>x2,与Y轴交于C(0,4),其中x1 x2是方程x的平方—2x—8=0 2010-12-31 22:09 提问者: 如图,抛物线y=-x²+bx+c与x轴交于A(1,0)B(-3,0)两点如图,抛物线y=-x2+bx+c与X轴交于A(1,0)、B(-3,0)两点(1)求该抛物线的解析式(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q, 如图,抛物线y=x²-2x-3与x轴交于A、B两点,与y轴交于点C,平移直线y=-x交抛物线于M、N,两点sorry....我没有图.... 如图,抛物线y=x2-2x-3与x轴交A、B两点如图,抛物线y=x^2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为21)P是线段AC上的一个动点,过P点作y轴的平行线交抛物 如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的 对称轴与x轴交于点N,过顶点M作M E如图,抛物线y=-x2+2x+c与x轴交于A,B两点,它的 对称轴与x轴交于点N,过顶点M作M E⊥y轴于点E,连结BE交MN于点F, 已知点A的