设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|^(n-1)第一问可用反正法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:28:24
设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|^(n-1)第一问可用反正法
x){n_۞MrVZrV+';v9jXlF55:O;f8jYt 4t 5YdG>egk?<&Hb`,n;a@cf>]lޜ" GM<;z

设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|^(n-1)第一问可用反正法
设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;
(2)|A*|=|A|^(n-1)
第一问可用反正法

设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|^(n-1)第一问可用反正法
(1)
证:
如果r(A)