请举两个例子说明连续两个奇数的平方差能被8整除RT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 18:22:51
请举两个例子说明连续两个奇数的平方差能被8整除RT
xQmN@JC!0ADE1V`* ] ]v|ݒ$#^fS3Iu0bĨWľcAXyj}q>Xǩ9XTɩ %rR&nҚ+&jsÐT$&ZD뭵/ WAsQω<."5JC+]]:q!---: @sD9&fE"FpiAcK+k,}NǾ=9 F &A9Dp?sFD{RLK3ʰ(&YC>ӳZYXK.wbֳuvP~f

请举两个例子说明连续两个奇数的平方差能被8整除RT
请举两个例子说明连续两个奇数的平方差能被8整除
RT

请举两个例子说明连续两个奇数的平方差能被8整除RT
n(n≥1,n∈2*Z+1)和n+2………………Z为整数集,解答时不必说明,我只是怕有人混乱了.
(n+2)^2-n^2
=n^2+4n+2^2-n^2
=4n+4
=4(n+1)
因为n为大于等于一的基数,所以,n+1为大于等于2的偶数,偶数必有一个因数2
所以4*(n+1)=4*2*[(n+1)/2]=8*[(n+1)/2]
所以,连续两个基数的平方差能被8整除.
例子:略,不列举.楼主自己考虑.

3和5
7和9