证明若f(x)在点x0处连续且f(x0)不等于0,则存在x0的某一邻域U(X0),当x属于这一邻域时,f(x)不等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:55:29
xQN@~4tyi҇01M8D(bR.$}m{rm~kJ2*N3t 2IhxOGNM;6J厑&W>c[O/=˚>8/7h*jBυɄ)L%w5ev))%,_i':-j01 +~=|fEU>6hka5eZ4ݨdn j 9ڂw(6`&x d,|c!,Xޭ
证明若f(x)在点x0处连续且f(x0)不等于0,则存在x0的某一邻域U(X0),当x属于这一邻域时,f(x)不等于0
证明若f(x)在点x0处连续且f(x0)不等于0,则存在x0的某一邻域U(X0),当x属于这一邻域时,f(x)不等于0
证明若f(x)在点x0处连续且f(x0)不等于0,则存在x0的某一邻域U(X0),当x属于这一邻域时,f(x)不等于0
因为 f(x)在点x0处连续且f(x0)不等于0,所以对于任意大小的d>0,存在x属于邻域U(X0),使得|f(x)-f(x0)|
函数极限的局部保号性
设f(x0)=A>0,所以,取ε=A/2>0,则存在δ>0,
当x在x0的δ邻域U(δ)内时,有
|f(x)-A|<ε=A/2推出
f(x)>A-A/2=A/2>0
f(x0)=A<0类似证明,这是一种极限
证明:若函数在区间[x0-a,x0]上连续,在(x0-a,x0)内可导,且limx->x0-(x0左极限)f'(x)存在,则limx->x0-(左极限)f'(x)=x0点左导数
微积分 函数连续性 证明若函数f(x)在点x0处连续且f(x)≠0,则存在x0的某一邻域U(x0),当x∈U(x0)时,f(x)≠0
证明若f(x)在点x0处连续且f(x0)不等于0,则存在x0的某一邻域U(X0),当x属于这一邻域时,f(x)不等于0
证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等于0
lim(x->x0)f(x)/x极限存在,且f(x)在x0处连续试问f(x)在x0处是否可导,请证明
设函数f(x)在x0处有三阶导数,且f(x0)=0,f'''(x0)≠0,试证明点(x0,f(x0))必为拐点
连续,导数,极限综合题,函数f 在x=x0处连续,且lim(x->x0) f(x)/(x-x0)=A 求 f'(x0)=?
大一微分题已知函数f在点x0处连续,在x0的某左半领域(x0-δ,x0)内可导,并且[lim x→x0-]f'(x)=k.证明函数f在x0点存在左导数且等于k应该是用拉格郎日中值定理证的吧,详细点嘛
用介值性定理证明:若f(x)与g(x)在[a,b]上连续,且f(a)g(b),则必存在点 x0属属于(a,b),满足f(x0)=g(x0).
limf(x)-f(x0)/x-x0(x->x0-)与limf(x)-f(x0)/x-x0(x->x0+)存在,则f(x)为什么在x0处连续
已知f(x)在x0处连续,且,f(x0)>0,试证存在x0的某邻域,在该邻域内恒有f(x)>f(x0)/2
证明函数 f(x)={ x+1,x0在点x=0处连续
f(x)连续,|f(x)|在x0处可导,则f(x)在x0出可导.如何证明?
设函数f(x)在点x0连续,且 limf(x)/x-x0=4,则f(x0)= x→x0limf(x)/x-x0=4,则f(x0)=x→x0
设函数f(x)在x0处连续,且limx→x0,f(x)/x-x0=2,则f(x0)=?
一道利用泰勒公式的证明题设函数f(x)在点附近有n+1阶连续导数,且f'(x0)=f''(x0)=...=fn(x0)=0,f(n+1)(x0)≠0 证明:若n为奇数,则点x0是f(x)的极值点;若n为偶数,则点x0不是f(x)的极值点
即证明复合函数的连续性诺函数f(x)在点x0上连续,g(u)在点u0上连续,且uo=f(x0),证明函数g[f(x)]在点xo上连续.
高数函数极限 连续 若f(x)在x0的领域内有定义,且f(x0-0)=f(x0+0),则f(x)在x0处是否有极限,是否连续?