证明高一的换底公式你是用了换底公式不是证明它已经知道了:已知 A^B=C,设 A=X^Y,C=X^Z 代入,X^YB=X^Z ,所以 YB=Z,又,B=LOG(A,C),Y=LOG(X,A),Z=LOG(X,C) 故 LOG(A,C) = LOG(X,C) / LOG(X,A)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:25:06
证明高一的换底公式你是用了换底公式不是证明它已经知道了:已知 A^B=C,设 A=X^Y,C=X^Z 代入,X^YB=X^Z ,所以 YB=Z,又,B=LOG(A,C),Y=LOG(X,A),Z=LOG(X,C) 故 LOG(A,C) = LOG(X,C) / LOG(X,A)
xRK@Wnp]z$5P[\D.[RFKVEh )KKT].GV?_<}N Yvaޟ~㝮B>:擗5áh]fmTh! [E{6 1Κk#V17;X%;[ JJ WP+jTx 2;@aF ߽&=eR].㣎]ѓC:w7楘H}g& |< '̽!(# :"%XbI@ p(輦,Cg0P 0-߉cÄF:}9_[

证明高一的换底公式你是用了换底公式不是证明它已经知道了:已知 A^B=C,设 A=X^Y,C=X^Z 代入,X^YB=X^Z ,所以 YB=Z,又,B=LOG(A,C),Y=LOG(X,A),Z=LOG(X,C) 故 LOG(A,C) = LOG(X,C) / LOG(X,A)
证明高一的换底公式
你是用了换底公式不是证明它
已经知道了:
已知 A^B=C,设 A=X^Y,C=X^Z 代入,
X^YB=X^Z ,所以 YB=Z,
又,B=LOG(A,C),Y=LOG(X,A),Z=LOG(X,C)

LOG(A,C) = LOG(X,C) / LOG(X,A)

证明高一的换底公式你是用了换底公式不是证明它已经知道了:已知 A^B=C,设 A=X^Y,C=X^Z 代入,X^YB=X^Z ,所以 YB=Z,又,B=LOG(A,C),Y=LOG(X,A),Z=LOG(X,C) 故 LOG(A,C) = LOG(X,C) / LOG(X,A)
设logbN=X,bx=N
两边取以a为底的对数,得:xlogab=logaN
logaN
X= logbN =
logab
logbN = logbalogaN = logaN·logba
logbN
∴logaN =
logba
由N=blogbN的两边取以a为底的对数,得:logaN =logbN·logab
logaN
∴logbN =
logab