设xyz=1,求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值已知实数a满足a^2+4a-8=0,求1/(a+1)-(a+3)/(a^2-1)×(a^2-2a+1)/(a^2+6a+9)的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 08:38:26
设xyz=1,求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值已知实数a满足a^2+4a-8=0,求1/(a+1)-(a+3)/(a^2-1)×(a^2-2a+1)/(a^2+6a+9)的值
设xyz=1,求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值
已知实数a满足a^2+4a-8=0,求1/(a+1)-(a+3)/(a^2-1)×(a^2-2a+1)/(a^2+6a+9)的值
设xyz=1,求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值已知实数a满足a^2+4a-8=0,求1/(a+1)-(a+3)/(a^2-1)×(a^2-2a+1)/(a^2+6a+9)的值
1.
xyz=1
x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)将x/(xy+x+1)中的1换为xyz得:
=x/(xy+x+xyz)+y/(yz+y+1)+z/(zx+z+1)
=1/(yz+y+1)+y/(yz+y+1)+z/(zx+z+1)
=(1+y)/(yz+y+1)+z/(zx+z+1)将(1+y)/(yz+y+1)中的1换为xyz得:
=(xyz+y)/(yz+y+xyz)+z/(zx+z+1)
=(xz+1)/(zx+z+1)+z/(zx+z+1)
=(zx+z+1)/(zx+z+1)
=1
2.
a^2+4a-8=0
所以a^2+4a=8
1/(a+1)-(a+3)/(a^2-1)×(a^2-2a+1)/(a^2+6a+9)
=1/(a+1)-(a+3)/(a+1)(a-1)×(a-1)^2/(a+3)^2
=1/(a+1)-(a-1)/(a+1)(a+3)
=[(a+3)-(a-1)]/(a+1)(a+3)
=4/(a+1)(a+3)
=4/(a^2+4a+3)
=4/(8+3)
=4/11
x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)
= x/(xy+x+xyz)+y/(yz+y+1)+z/(1/y+z+1)
=1/(y+1+yz)+y/(y+1+yz)+zy/(1+yz+y)
=(1+y+yz)/(1+y+yz)
=1
第二个
条件化简: (a+2)^2=12 a^2+4a= 8
原式 = 1/(a+...
全部展开
x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)
= x/(xy+x+xyz)+y/(yz+y+1)+z/(1/y+z+1)
=1/(y+1+yz)+y/(y+1+yz)+zy/(1+yz+y)
=(1+y+yz)/(1+y+yz)
=1
第二个
条件化简: (a+2)^2=12 a^2+4a= 8
原式 = 1/(a+1)-(a+3)/(a^2-1)×(a-1)^2/(a+3)^2
= (a+3)/{(a+1)×(a+3)] -(a-1)/[(a+1)×(a+3)]
= 4/(a^2+4a+3)
= 4/(8+3)
= 4/11
收起